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ABSTRACT

A method to approximate time optimal paths for robotic
manipulators is presented. The method uses the Acceleration Map
which is a graphical representation of the manipulator dynamics. The
Acceleration Map is composed of Acceleration Lines that represent the
directions of maximum tip acceleration from a point at zero velocity.
The time optimal path is approximated by connecting a smooth curve
between the end points, tangent to the Acceleration Lines. Itis shown
that nonsingular time optimal paths, with zero velocity at their end

points, are tangent to one of the Acceleration Lines near the end-
points.

INTRODUCTION

The task of obtaining the time optimal motion for robotic
manipulators with nonlinear and coupled dynamics, using existing
methods (1-5], is computationally cumbersome, and typically done
off-line. In applications where off-line methods are not acceptable, a
fast approximation to the optimal motion is desirable. In this paper,
the motion of a manipulator between two end points is regarded as
being composed of a path, describing the locations (and orientation) of
the end-effector, and a velocity profile along that path. The optimal
motion is, therefore, composed of the optimal path and the optimal
velocity profile along that path. This paper presents a computationally
fast method that can obtain approximations to time optimal paths, and
is potentially applicable to on-line path planning. The motion along
the path is obtained using the method for time optimal motion along
specified paths, presented in References [6,7). The path
approximation method is based on a graphical representation of the
acceleration capabilities of the manipulator. Graphical representations
of manipulator dynamics have been previously developed in the form
of the effective inertia of the manipulator tip [8], its dynamic
manipulability [9], and its acceleration capabilities [10]. The
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acceleration capabilites of the manipulator tip, in the form of
Acceleration Parallelograms, were first used for optimal kinematic
design of manipulators {11]. In {10} the Acceleration
Hyperparallelepipeds were introduced, which are similar to the
Acceleration Parallelograms, but generalized to higher dimensions.
The method presented here inroduces the Acceleration
Parallelepipeds which represent the maximum acceleration capabilities
of the end-effector in all directions from a given point. The
Acceleration Parallelepipeds are similar to Khatib's Acceleration
Hyper- paralielepipeds, except that here they represent the acceleration
component parallel to the direction of motion, while Khatib's
Acceleration Hyperparailelepipeds represent the absolute tip
acceleration. The Acceleration Parailelepipeds are used to construct
the Acceleration Lines that indicate the directions in which a
manipulator tp has the highest acceleration from a given point in the
work-space, starting with zero velocity. It is shown here that
nonsingular minimum time paths are @angent to the Acceleration Lines
ac the end points. Near-optimal paths can be constructed by
connecting smooth curves between the end points, tangent to the
Acceleration Lines. Time optimal paths, obtained with 2 more
accurate off-line method, presented in [12}, are shown to be highly
correlated with the Acceleration Lines. The method is derived in a
general form for any nonredundant manipulators, however, it can be
visualized easily in two dimensions, as demonstrated in examples for
a two link manipuiator. The Acceleration Lines provide also insights
into the possible shape of the time optimal paths, and can be used as a

design tool in the design of work cell layouts for fast motion berween
work stations.

THE METHOD

A manipulator’s tip acceleration capabilities are represented
graphically by the Acceleration Lines (AL) which represent the
directions in which the manipulator's tip can move with the highest
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. from the Acceterauon Parallelepipeds (AP) which represent the

maximum available acceleration of the manipulator Gp in ail direcions
at a given configuration. This method is applicable to manipulators

with rigid links for which the dynamic modet and joint coordinates
can be defined for any point on the path

T terarion Paralleleniped

In this section the Acceleration Parallelepipeds (AP) are
presented. An AP, derived from the manipulator dynamics,
represents the maximum acceleration available for the manipulator tip
in all directions from a given point in the work space. The
acceleration represents the component in the direction of mation
(tangent to the path) of the absolute acceleration, and is dependent on
the velocity and path curvature.

To obtain the Acceleration Parallelepipeds we first consider the
equations of moton of the manipulator:

Mi-8'Cl+G-T )

where M is an nxn inertia matrix, n is the number of the manipulator
degrees-of-freedom, C is an nxnxn array of the coefficients of the
coriolis forces, G is a vector of the gravity forces, T is the vector of
actuator efforts, and 8, 8 and § are the joint displacements,

velocities and accelerations, respectvely [6,7]. The actuator torques
are bounded by constant bounds:

Timin < Ti < Timax: i=l,..n (¥3)]

The path of the end-effector can be represented by the six
dimensional vector P, composed of the position and orientation of the
end-cffector:

X @ = (xy,2.9,9,99)
where X, is the position vector, and @ is the vector of the Euler
angles, representing the orientation of the end-effector fixed frame
with respect to an inertial frame. The mapping from the joint angles to
work space coordinates is defined by the kinematic ransformation:

E(S)=R®@ . &)}
If the displacement S is a parameter along the path, the vectors § and
S, are the velocxty and the acceleration tangent o the path, with the
magnitudes $ and S , respectively. lefcrcmxatmg Equation (3)
twice with respect to time and solving for 8 and 8 yields {7]:

A -1
8 =R P_SS

B-r/e SR $ 5 RIE)TR, ®R)S T
where Ry is the Jacobian mawmix:

Rg(i,j) =dR{/2 9j
and Rgyg is the Hessian of the vector function R. B is a unit vector in
the direction of motion, Bgg is a vector in the direction of the
centrifugal acceleration. The s and @ subscripts denote partial

derivatives with respect to the scalar S and the vector 8, respectively.
Substituting Equarion (4) into Equation (1) yields the equations of
motion in terms of , $and § :
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M” = MRgy -1
h=MRgq-{Bss-(Rg -1B5)TRgg(Rg -1B5)}+(Rg -B5)TC(Rq -1B5)

Solving Equation (5) for the acceleraton S yields:

§ =RyMYT-n§2+q) ©

If we ignore the gravity forces G and assume zero velocity, then
Equarion (6) reduces to:

§ =R, M'T M

For given joint angles @, Equation (7) defines a linear mapping
from the acruator torques T to the acceleration 3 atzero velocity. In
multi-dimensional space, this transformation maps the rectangular
polyhedron, representing the region of the available torques T, to the
Acceleration Parallelepipeds (AP). In two dimensions, the
parallelepipeds reduce to parallelograms, as shown in Figure 1. The
AP defines the region of the maximum available acceleration in ail
directons at a given configuration. Referring to Figure 1, the
maximum acceleration is given by the vector directed in the direction
of motion, originating at the AP center. The magnitude of the vector
from the AP center to the AP boundaries determines the magnitude of
the available acceleraton in this direction. Similarly, the maximum

deceleration is given by the vector from the AP center directed in the
opposite direction.
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Figure | Mapping the Actuator Torques into the Acceleratdon
Parallelogram at Zero Velocity.

Plotting the AP in the work space provides insights into the
acceleration capabilites of the manipulator. Figure 2 shows the
Acceleration Parallelograms in work space and in joint space
coordinates for the two link manipulator shown in Figure 3 with the
parameters given in Table 1. Note that in joint space the Acceleration
Parallelograms are uniform in the 8 direction since the equations of

motion are not a function of 8y for this system. From Figure 2 it can
be seen that the maximum end-effector acceleration varies with the
direction of motion and with the location of the tip in the work space.
It is possible to obtain a desired manipulator dynamic performance,
such as isoopic and uniform sized Acceieration Parallelograms, by
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Acceleration Parallelepipeds were obtained at zero velociry; however,
‘uniike thie Acceleration Hyperparallelepipeds presented in (10}, here,
the Parallelepipeds deform and lose their shape as the velocity
increases, as shown in (12].

a) The Acceleration Parallelograms in Work Space Coordinates

%0

Yheta 2 [degrees]

-380 -2370 pl

Theta i [(cegrees)

b) Acceleration Parallelograms in Joint Space Coordinates

Figure 2 Acceleration Parallelograms for the Two Link
Manipuiawor Shown in Figure 3
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Figure 3 A Two Link Manipulator

l|=0Sm L{=10m my=lkg I=2Kgm* T{=10N-m

lh=0Sm Ly=10m ma=lkg I2=2Kgm® Tz=10N-m
Table | Manipulator's Parameters
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At zero velocity, the Acceleration Lines (AL) represent the
directions of motion with the highest accelerarion of a manipulator's
tip from a given point. These lines reflect the manipulator’s specific
parameters and its dynamic behavior in the work space. The AL can
be derived either in work space or in joint space coordinates: in either
representation, they can be used to suggest the general shape of time
optimal paths.

An Acceleration Line is constructed by plotting the locations of a
vertex of the Acceleration Parailelepipeds, following successive
moves in the direction of that vertex, as shown in Figure 4
schematically for a two-dimensional manipulator. Since, in general,
the AP are shaped differently at different points in the manipulator
space, the assembly of the line segments results in a curved line that
reflects the change in direction of the manipulator's maximum
acceleration capabilides. Since each Acceleration Paralleiepiped has n
vertices. there are n different AL departing from each point, n being
the number of the manipulator's degrees of freedom. Since the AP
with zero velocity is used at all points along the AL, these lines are
most meaningful when the velocity is reladvely small.

o~=ACCELERATION ~mgq

Figure 4 The Construction of The Acceleration Lines



Acceleranon Lines and Time Opumal Paths

It 1s-shown below that nonsingular and bang-singular-bang
time optimal paths are tangent to the Acceleration Lines at the end
points. A nonsingular optimal path is defined here as a path along
which the time optimal trajectory (path and velocity) consists of
bang-bang conwol (the actuators are at their extremes at all times). A
singular arc is a portion of a time optimal trajectory which is not
necessarily bang-bang. A bang-singular-bang arc is a time optimal
trajectory with bang-bang contol only near the end points.

Corollary

Nonsingular and bang-singular-bang time optmal paths are
tangent to the Acceleration Lines at the end points, provided the
velocity at the end points is zero.

Proof

By definition, the actuators of nonsingular and bang-singular-
bang trajectories are at their extremes at least near the end points.
The Acceleration Lines are constructed such that they depart from
the end points in the directions obtained by applying some
combination of the actuator extremes (the actuator extremes
represent the vertices of the I region which are mapped into the
vertices of the AP). Hence, an optimal path tangent 10 one of the
Acceleraton Lines near the end points is either bang-bang or
bang-singular-bang , assuming zero velocity at the end points.

The Acceleration Lines provide partial information about the
shape of time optimal paths near their end points. For nonlinear
systems, several local time optimal paths may exist which satisfy this
corollary (2], each tangent to a different set of Acceleration Lines.
Theoredcally, if there are n Acceieraton Lines at every point in the
work space, there may be at most (2n)2 different nonsinguiar local
time optimal paths. Experience shows that the global optimai path is
the shortest one among all the local optimal ones (12].

Approximate time optimal paths can be obtained by connecting
the end points with smooth curves, tangent to the Accelerauon Lines.
The optimal motion along these paths is then obtained using the
method presented in [6,7]. These paths are only approximations to
the rue time optimal paths since their shape further away from the end
points is not known exactly. The shape of the optimai paths between
the end points depends on the size of the coriolis forces, the vector
in Equation (5); the smaller the corolis forces, the closer the path to
the Acceleration Lines. Approximating the shape of the optimal path,
in particular its slopes at the end points, may speed up exact
optimization methods. such as the one using the Ponryagin maximum

principle (2], and other methods which require an initial path for the
optimization [1].

EXAMPLES

The following examples demonstrate the high coreilation
between the Acceleradon Lines and time optimal paths, obtained with
the method presented in (1]. In the following examples, the two link
manipulator shown in Figure 3 is used.

+ 13Ul 4 3UUWS WIS [UanIpulalor ana the Acce =rauon Lines at
the end points. The ume optimal path. also shown 11 Figure 5. was
obtained by the paramerer opuimization method [1], representing the
path by 7 B splines. The optimal path in Figure 5 is shown to be
consistent with the Acceleration Lines, suggesting that this path is
indeed close to the true optimal path. Optimal paths obtained with
more control points tended to come closer to the Acceleration Lines.

Acceleranon
Lines from
Final Pomnt

V4

Accelerauon
Lines from
Ininal Point
-2.0
~-2.0 2.0

Figure § The Time Optimal Path and the Acceleration Lines

Figure 6 shows two optimal paths with similar dmes. Plotting
the Acceleradon Lines at the end points, shown in Figure 7, suggests
that at least two global anti-symmetric solutions can be expected.
These paths were obtained while optimizing in work space
coordinates. While optimizing in joint space coordinates, the optimal
path shown in Figure 8 was obtained. Again, comparing the path to
the Acceleration Lines may explain or even suggest its shape. The
differences between the work space and joint space optimizations arise
from the fact that while opamizing the path in work space coordinates,
the solutions tend to avoid the center point which is a point of
singularity. In joint space representation, there are no singular points,
therefore the solution can pass through the center point, as was shown
in Figure 8. The second symmetric solution in joint space coordinates
is a mirror image of the path shown in Figure 8. In joint space, the
two solutions were obtained by optimizing two separate paths, with
one common end point, and the other end points spaced 360 degrees
apart, as shown in Figure 9. Also shown in Figure 9 are the joint
space Acceleration Lines at the end points. Figures 10 and 11 show
optimal paths and their Acceleration Lines between other end points.

These examples demonstrate that optimal paths are tangent to the
Acceleration Lines at the end points. The high correiation between
time optimal paths and Acceleration Lines suggests that the general
shape of the oprimal paths could be predicted from the shape of the
Acceleration Lines only. Experience shows that the global optimal
path is the shortest path among all possible local optimal paths
(tangent to one of the Acceleration Lines at the end points).
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Figure 8 An Optimal Path Shown in Work Space Coordinates,

Optmized in Joint Space Coordinates for Same End Points as in
Figure 6

Figure 11 An Opdmal Path and the Acceleraton Lines
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) A Neuristic method to analyze optimal paths and synthesize near-
minimurn paths has been presented. The method uses Acceleraton
Lines to represent the directions of maximum acceieration of a
manipulator tp in work space or joint space coordinates. It is shown
that nonsingular time optimal paths are tangent to the Acceleration
Lines at the end points, provided that the initial and final velocities are
zero and that he coriolis forces are relatively small. Examples are
presented that demonstate the close fit between rime optimal paths and
their Acceleration Lines. The examples and experience suggest that
the global optimal path. without obstacles. is the shortest path among
the local optimal ones. This path can be easily approximated using the
Acceleraton Lines only.

Since the Acceleration Lines are obtained by a direct
computation, they can be used to generate quickly near-minimum
paths in a real time path planning procedure. Approximations to time
optimal paths can be also used as initial conditions for more exact
optimization procedures, such as the ones presented in {1,2.5]. The
Acceleration Lines provide insights into a manipulator's dynamic
behavior, and can be used for work cell layout design.
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